Achieving accurate anomaly detection requires more than statistics. Simple assumptions like normal distribution do not work in the real world. Time series data – representing anything from customer acquisition, to application performance, to manufacturing KPIs – tend to have many different behaviors that need to be modeled accurately. These include seasonal patterns, non-stationary behaviors, and intricate correlations between signals, among others.

Join Ira Cohen, Anodot’s Chief Data Scientist and Bill Vorhies, Editorial Director, Data Science Central, where they will discuss:

  • Fundamental machine learning techniques for anomaly detection
  • Requirements of an anomaly detection system in various use cases
  • Issues and pitfalls to watch out for when implementing anomaly detection
  • Common use cases and examples

Details

Title: Accurate Anomaly Detection with Machine Learning

Date: Thursday, October 13, 2016

Time: 09:00 AM Pacific Daylight Time

Duration: 1 hour

::UPDATE:: Click here to watch the full webinar.

Written by Anodot

Anodot is the leader in Autonomous Business Monitoring. Data-driven companies use Anodot's machine learning platform to detect business incidents in real time, helping slash time to detection by as much as 80 percent and reduce alert noise by as much as 95 percent. Thus far, Anodot has helped customers reclaim millions in time and revenue.

Topics: Machine Learning
alert decoration image

See Anodot in Action

Submit the form and an Anodot expert will get in touch to schedule a demo