
MONITOR YOUR KUBERNETES
APPLICATIONS LIKE A BOSS

Applications running on Kubernetes can be difficult to manage
and monitor. A single point of failure anywhere throughout your
distributed environment can stop the entire process and have
a significant impact on user experience, revenue, and brand

reputation. Autonomous monitoring is the most effective way to
stay on top of your Kubernetes ecosystem.

KUBERNETES MONITORING 2

If you’re already running Kubernetes, you are on the right track with your organization’s
progress towards IT automation. Today, Kubernetes is the de facto standard for container
orchestration. It enables you to automate the microservices lifecycle, scale on demand,
and self-remediate. From a business perspective, Kubernetes can help you reduce
operational costs and increase the efficiency of your engineering teams.

Monitoring distributed environments has never been easy. While solving some of the key
challenges involved in running distributed microservices at large, Kubernetes has also
introduced some new ones. The growing adoption of microservices makes logging and
monitoring more trying since it involves a large number of distributed and diversified
applications constantly communicating with each other. On one hand, a single glitch
can kill the entire process. On the other hand, identifying failures is becoming more
difficult. It’s not surprising that engineers list monitoring as a major obstacle for adopting
Kubernetes.

Multi-layered Complexity

Monitoring Kubernetes environments involves staying on top of the Kube system,
Kubernetes (infra), and the applications themselves. At the system level, monitoring
pertains to the health of the entire Kubernetes system, including resource utilization
status, how many applications are running on each node, and whether all the nodes are
working properly and at what capacity.

Additional monitoring involves three separate layers: Kubernetes metrics, container
metrics, and application metrics. Kubernetes metrics relate how a specific microservice
and its deployment are being handled by the orchestrator, and provide information on
network status, on-progress deployment status, the number of instances a service is
utilizing, etc. Container metrics include CPU, network, and memory usage. Application
metrics are specific to the app itself, and differ widely between a gaming app, a storage
app, and an ecomm app.

That’s a lot of ground to cover. A glitch anywhere throughout these layers can have a
significant impact on user experience, revenue, and brand reputation, so monitoring your
Kubernetes environment is non-negotiable.

If you’re already using Kubernetes, you’ve clearly made a commitment to digital transfor-

NEW TECHNOLOGY, NEW
MONITORING CHALLENGES

KUBERNETES MONITORING 3

-mation. You’re probably using the auto-healing mechanism to resolve issues. So it hardly
makes sense to be manually setting alerts, a key process in your AIOps workflow. Manual
alerts and thresholds are a non-starter when it comes to Kubernetes. If you happen to be
running multiple clusters, each with a large number of services, you’ll find that it’s rather
impractical to use static alerts, such as “number of pods < X” or “ingress requests > Y”,
or to simply measure the number of HTTP errors. Values fluctuate for every region, data
center, cluster, etc. You either get way too many false-positives—or you could miss a key
event.

Autonomous Monitoring is Key

For effective monitoring, it’s critical that your system automatically understands the
severity of an incident and whether it has the potential to become catastrophic.
Decisions such as when to wake up at night, when to scale out, or when to back pressure
must be made automatically.

KUBERNETES MONITORING 4

Given our experience running Kubernetes in large-scale production environments, we’d
like to share our guidelines for getting the most efficient alerting process. By adopting
an AI monitoring system, your organization can use machine learning to constantly track
millions of events in real time and to alert you when needed. This will enable your team
to refocus their efforts on mission-critical tasks.

So whether you’ve already implemented AI monitoring, or you’re thinking about doing so,
here are our five best practices for managing autonomous alerts:

Although granular resource metrics such as CPU, load and memory are important to
identify Kubernetes microservice issues, it’s hard to use these convoluted metrics. In
order to quickly understand when a microservice has issues, there are no better KPIs
than API metrics like call error, request rate and latency. These will immediately point to a
degradation in some component within the specific service.

The easiest way to learn service-level metrics is by automatically detecting anomalies
on REST API requests on the service’s load balancer, ideally over Ingress Controller such
as Nginx or Istio. These metrics are agnostic to actual service and can easily measure all
Kubernetes services in the same way. Alerts can be set at any level of the REST API (or
any API), including customer-specific behavior in a multi-tenant SaaS.

Here is an example of an increase in request count to one of the microservices that was
detected automatically:

BEST PRACTICES FOR
MONITORING KUBERNETES

Track the API Gateway for Microservices in Order to
Automatically Detect Application Issues

1.

KUBERNETES MONITORING 5

An example of a latency drop for one of the services, identified automatically:

Look at how the baseline changes in the graph above. If there had been a static
threshold here, the user would have had to manually adjust for this new state, or baseline.

There are several reasons rule-based alerts (aka static alerts) would not work here. With
hundreds of different APIs, each with their own behavioral patterns, there is no feasible
way to maintain a static alert for each of them. AI monitoring automatically adjusts to the
new state baseline, which reduces quite a bit of maintenance.

Now, if you’re more interested in dramatic changes – sure, anyone can identify when
metrics drop to zero, but by that point, you’re just trying to put out the fire. With the scale
and granularity of AI analytics, pattern changes are detected far before they drop to zero.
And the ability to adapt to fluctuating patterns reduces false-positives and the ensuing
maintenance, while also shortening time to detection.

Due to the dynamic nature of Kubernetes resources, and the assumption that replicas
in Deployment are symmetric, it has become very noisy to monitor container resources
individually. Metrics change on a daily or hourly basis within the short life cycle. For
example, ReplicaSets metrics change with every deployment as a new ReplicaSet ID
is generated. Typically, we want to learn about pattern changes on the entire set of
containers. For that we use cAdvisor, which can provide container-based metrics on CPU,
memory and network usage. Key metrics include:

Stop Measuring Individual Containers2.

KUBERNETES MONITORING 6

From the above, it’s clear that a change in the average ‘max memory usage’ for a given
container set indicates a need to fix the default limits and requests for memory.

The anomalies in the graph below show an increase in average memory usage by some
set of containers in a specific cluster. In this case, the Etcd cluster:

In the next example, the system learns the Kubernetes Deployment CPU usage and
understands what constitutes normal behavior. The baseline in this graph indicates the
metric’s normal behavior, learned over time. Establishing this baseline ensures an alert
isn’t fired each and every time a CPU peaks. The system recognizes the dark blue peaks
in the previous graph as less significant anomalies and those marked in orange as critical.

Kube-State-Metrics is a nice add-on that keeps tabs on the API server and generates
Kubernetes resource metrics. Typically the ones that merit alerts are related to the Pod’s
lifecycle and services state. Take, for example, a container state metric that includes the
property “reason”:”OOMKilled”. This error may occur occasionally due to HW issues or
rare events, but will usually not require immediate attention. But by following “status”
and “reason” metrics over time, you can really start to understand if these “hiccups” are

Get to the Heart of Potential Problems by Tracking
“Status” or “Reason” Dimensions3.

KUBERNETES MONITORING 7

actually trends. In that case, you’ll likely need to adjust the allocated Limits and Requests
to alleviate memory pressure.

As for issues related to services, the number of replicas per service usually depends
on the scale of events (in an auto-scaled environment) and the roll-out strategy. It is
important to track unavailable replicas and make sure that issues are not persistent.

High disk usage (HDU) is by far the most common issue for every system. There is no
magic for getting around this or automatic healing for StatefulSet resources and statically
attached volumes. The HDU alert will always require attention, and usually indicates an
application issue. Make sure to monitor ALL disk volumes, including the root file system.
Kubernetes Node Exporter provides a nice metric for tracking devices:

Usually, you will set an alert for 75-80 percent utilization. Nevertheless, identifying pattern

Always Alert on High Disk Usage!4.

KUBERNETES MONITORING 8

changes earlier can reduce your headaches. The chart below shows real disk utilization
over time and triggers anomaly alerts on meaningful drops.

By far the most complex issues stem from the actual Kubernetes System. Issues will
typically occur due to DNS bottlenecks, network overload, and, the sum of all fears –
Etcd. It is critical to track degradation of master nodes and identify issues before they
happen, particularly load average, memory and disk size. To make sure that we do not
crash the clusters, we need to monitor specific kube-system patterns, in addition to the
aggregated resource pattern detection mentioned in tip #2.

Most of the components on kube-system provide metrics on “/metrics” resource that can
be scraped directly automatically. We recommend tracking application-level metrics for
each kube-system component, such as:

Don’t Ignore the Kube-System5.

KUBERNETES MONITORING 9

As opposed to other off-the-shelf or homegrown monitoring solutions, Anodot’s deep
360 technology is built for 100% autonomous monitoring of 100% of your Kubernetes
data—in real-time. By leveraging AI to constantly monitor and correlate performance,
Anodot provides mission-critical alerts in context, enabling the shortest time to detection
and resolution.

Anodot’s industry leading monitoring technology includes:

Unsupervised machine learning built for monitoring. Learning every metric’s normal
behavior is a prerequisite to identifying anomalous behavior. However, container and
microservices metrics run a wide gamut of signal types and behaviors. Anodot uses
sequential adaptive learning algorithms that initialize a model of what is normal on the
fly, and then compute the relation of each new data point going forward.

Real-time monitoring of 100% of data. A cluster can consist of thousands of nodes,
and an even greater amount of pods, and significant anomalies can occur in various
metrics and depths of the architecture. In addition, disparate anomalies need to
be constantly correlated to report on incidents in context, requiring complete data
coverage. Anodot analyzes 100% of your Kubernetes metrics in real time and at scale
by running machine learning algorithms on the live data stream itself, without reading
and writing to a database.

Detection of seasonality. Kubernetes metric values fluctuate for every region, data
center, cluster, etc, on a daily or hourly basis. Anodot’s patented Vivaldi method for
seasonality detects every kind of seasonal behavior, enabling the model to construct
a true to life understanding of your metrics’ dynamics. As opposed to manual or semi-
autonomous thresholding, Anodot frees you from the false positives, false negatives
and alert storms—while ensuring that you don’t miss key events.

Metric correlation and root cause analysis. For each incident, Anodot groups
correlated anomalies and identifies all events and contributing factors. Anodot uses
a patented combination of algorithms to create an initial understanding of related
metrics and consider them simultaneously in order to describe the whole incident.

Anomaly Scoring. Grading anomalies is critical for filtering alerts by significance. Alerts
are scored according to deviation, duration, frequency and other related conditions.

MONITORING KUBERNETES
WITH ANODOT

Anodot’s patented anomaly scoring method runs probabilistic Bayesian models to
evaluate glitches both relative to normal based on their anomaly pattern, and relative
to each other, to ensure that only—and all—significant incidents are detected and
flagged.

By adopting an AI monitoring system, your organization can use machine learning to
constantly track millions of your Kubernetes events in real time and to alert you when
needed. Anodot’s Autonomous Monitoring solution creates a comprehensive view by
monitoring the Kubernetes environment and the applications themselves, to bulletproof
your operations. It is vertical-agnostic, and ideal for companies in various industries
including software, e-commerce, online retail, adtech, digital entertainment, fintech and
more. Anodot automatically illuminates critical data blind spots for the shortest time to
detection and resolution, so companies never miss another incident—and can rely on a
system where every alert counts.

www.anodot.com
—

©2020 Anodot Ltd. All Rights Reserved

Deep 360 Monitoring™
Built for Autonomous Monitoring of All Data

https://www.anodot.com/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=Monitoring_Kubernetes

