
THE ESSENTIAL
GUIDE TO
TIME SERIES
FORECASTING

Part III: A System
Architecture Built to
Support Autonomous
Forecasting

https://www.anodot.com/

2  The Essential Guide to Time Series Forecasting — Part III

INTRODUCTION
Accurately forecasting growth and demand within

a business is one of the most important aspects of

corporate planning. Every company needs to know

how much revenue it realistically can expect to earn in

the future, how much money it can comfortably spend

in the coming year, what kind of demand there will be

for its products and services in the quarters ahead, and

so on. Without reliable forecasts for these metrics, a

company would not know how to operate.

In Part I of this white paper series, we talked about

the challenges of doing forecasting manually. At

best, a cumbersome process can only yield high-level

forecasts for one or two critical metrics, and only for a

one-time prediction. Even a data science team would

build something that is not a product, doing their

model training and running a forecast on some servers

as a one-time effort. The next time the same forecast is

needed, the kludge of a process must be repeated. It’s

an inefficient use of resources and a totally ineffective

way to conduct frequent or detailed forecasts. The far

better approach is to use a fully automated, machine

learning-based system that can generate forecasts on

demand or even continuously.

Building the underlying infrastructure that can

support such a system is no trivial matter. There

are many ways that a technical team can approach

building a system that essentially “productizes” the

generation of accurate forecasts. Anodot’s team of

highly skilled and experienced machine learning

experts, application developers and DevOps specialists,

among others, laid out a system architecture and

technical components that have resulted in the SaaS-

based turnkey forecasting solution known as Anodot

Autonomous Forecast.

“Productizing” the
generation of accurate
on-demand or continuous
forecasts requires a system
architecture and many
technical components.
Anodot describes the
architecture that underlies
Autonomous Forecast.

This white paper describes that system architecture

and its core components, all of which have been built

from scratch. Prior to Anodot’s efforts, there was no

blueprint for how to build an autonomous forecasting

system. We couldn’t go to some app store and pull

a forecasting system off the shelf—but now Anodot

customers can do just that. They can bring their

time series data and relevant events, plug them into

Autonomous Forecast, specify what they want to

forecast, and get their desired output in the format

they desire for consumption (e.g., via a dashboard,

in alerts, in reports, etc.). It’s all very turnkey, push-a-

button for customers, and getting to that point capped

a complex year-long development effort by Anodot,

which we describe in the pages below.

https://www.anodot.com/

3  The Essential Guide to Time Series Forecasting — Part III

AN OVERVIEW OF THE
SYSTEM ARCHITECTURE
At a high level, Figure 1 below shows the blueprint

Anodot developed for a machine learning-based

forecasting system.

In general, the processes of this blueprint go

something like this:

•	CONNECT THE DATA – Allow the customer to

provide its own internal data sources, plus external

data and/or events, if desired. Store this data in a

time series database.

•	SELECT THE FORECAST METRICS – Allow the

customer to specify what metrics to forecast, over

what time period.

•	DO AUTOMATIC DATA PREPARATION – Using

Anodot’s Autonomous Detection solution, pre-

process the historical data of the metric to be

forecast by looking for anomalies that could affect

the forecast. Depending on how many factors

have been provided for the datasets, run various

algorithms and procedures to weed out factors that

are not relevant to the forecast metric.

Connect Your Data

Time Series
Events

Select Forecast Metrics

Automatic
Data Preparation

Correlate with
Public Data

Anomaly-Based
Pre-Processing

Hybrid RNN

Linear Temporal Models

Prophet

LSTM

Ensemble of Models Customized
Forecast Model

Forecast

Dashboard
Alerts

Reports

Consume Insights

Automatic
Model

Review

INTEGRATION TRAINING CONTINUOUS FORECASTING

Figure 1. The blueprint for Anodot’s Autonomous Forecast product.

https://www.anodot.com/

4  The Essential Guide to Time Series Forecasting — Part III

•	TRAIN THE MACHINE LEARNING MODELS – Send

data and other relevant factors to a variety of

algorithms to derive a forecast and then test each of

the results for accuracy. Store all of the results and

the information about the models for future use.

•	CREATE A CUSTOMIZED MODEL – Based on the

accuracy measurements, select the best models for

the use case and create an ensemble from them

that yields the custom model that can be used to

forecast the metric on demand or continuously.

Store this model and all its parameters for future use.

•	REVIEW THE CUSTOMIZED MODEL – Conduct

frequent reviews of the custom model to ensure it

is optimized. If the accuracy is slipping, repeat the

previous steps to retrain the models and create a

new ensemble customized model.

•	MAKE A FORECAST – Using the customized model

and data supplied by the user, create an actual

forecast and store the results for future use.

•	CONSUME THE FORECAST INSIGHTS – Send output

of the forecasting process to a dashboard, reports,

alerts, or to other information systems.

There isn’t a single architecture that everyone agrees

on for accomplishing the process outlined above, so in

a way, Anodot has created something new. It’s how we

chose to build our system so that it can ultimately be

used by the non-data scientist and the non-developer.

https://www.anodot.com/

5  The Essential Guide to Time Series Forecasting — Part III

THE THREE MAIN COMPONENTS
OF THE FORECASTING SYSTEM
The illustration in Figure 2 shows the main components

of the forecasting system built by Anodot.

Shown on the left-hand side of the illustration, the

training module is where we train the forecasting

models. On the right-hand side is the forecasting

module, which is the part that continuously forecasts

the desired metric. The uppermost portion of the

illustration shows the persistency layers comprised of

the data stores where data, models and other pertinent

details are kept.

Figure 2. The main components of the Anodot forecasting system.

FORECASTING MODULE

Data
formatter

Ensemble
Based
Forecast

Deep Learning (LSTM)
Tensorflow

Anodot baselines
Anodot SDK

Prophet
Python

Hybrid Deep-Learning
Algorithm
PyTorch

Task Manager
Predict
Apache Airflow

Preprocessing
Anodot Anomalies
Anodot correlations

Validator Module
Retraining/Notification
Anodot Anomaly/Static
Alerting

Data
formatter

Ensemble
Learning

Deep Learning (LSTM)
Tensorflow

Anodot baselines
Anodot SDK

Prophet
Python

Hybrid Deep-Learning
Algorithm
PyTorch

Task Manager
Train/Validate
Apache Airflow

Preprocessing
Anodot Anomalies
Anodot correlations

TRAINING MODULE

Cassandra

Forecast Persistence

•	 Forecast Task Definition

•	 Forecast Results and
Error Measures

•	 Computed Models:
Vesion control

•	 Preprocessing definitions:
correlations/anomalies

Cassandra

Timeseries db

https://www.anodot.com/

6  The Essential Guide to Time Series Forecasting — Part III

THE DATA STORE:
PERSISTENCY FOR DATA, MODELS,
DEFINITIONS AND MORE
The data store components of the solution are shown

in Figure 3.

The first part of the data store (on the right-hand

side of the image) collects and stores the actual data

that is to be forecast, along with all the supporting

data that will help with the forecast. For example, if

we are forecasting revenue, all the data for revenue

is stored in this time series database. Or, continuing

with the eCommerce example used in Part II, if we are

forecasting the sales of shoes, we keep historical data

on shoe sales, as well as sales of adjacent product such

as socks, plus information about special events like

back-to-school sale dates and Black Friday sale dates.

Figure 3. The data store components.

The second part of the data store is for persisting the

models themselves. When we train a model, we want to

persist that description of the model, the forecast tasks

and their definition, the results and error messages,

and the models themselves with version control around

them. We also want to persist any type of definitions we

had around correlations and how to handle anomalies.

Anodot has chosen to use the Cassandra database for

the data store. This persistence layer is very important

in order to keep everything in a way such that it can

be retrieved, debugged, perfected and used again. The

ability to do this distinguishes a forecasting system

from a one-time approach to forecasting where little is

preserved for re-use.

Cassandra

Timeseries db

Cassandra

Forecast Persistence

•	 Forecast Task Definition

•	 Forecast Results and
Error Measures

•	 Computed Models:
Vesion control

•	 Preprocessing definitions:
correlations/anomalies

https://www.anodot.com/

7  The Essential Guide to Time Series Forecasting — Part III

THE TRAINING MODULE
The training module component of the solution is

shown in Figure 4.

In Part II of this white paper series, we discussed the

design principles of our forecasting system. One of

those principles involves training multiple forecasting

models to see which have the best results. A model that

works well for one dataset might not work quite as well

for another, so training and testing a variety of models is

important to attain the most accurate results possible.

Training a model entails a lot of pre-processing steps.

This creates a need for a task manager component or a

workflow component that allows us to predefine all the

different parts of the workflow of what it takes to train

the model itself. Anodot uses Apache Airflow for this

task manager component. It allows us to schedule the

execution of a wide array of tasks for the pre-processing

step, which includes discovering anomalies in the data,

and for the correlation step, which prepares the data for

the different types of algorithms.

Then the task manager has to orchestrate the training

of all the different models. Basically, it sends the data

to the models, tells the system to spin up a new server

(or set of servers) that will train, for example, an LSTM

model with this data. When the LSTM model finishes

its task, the task manager stores the data and waits for

all the other models to finish their tasks. (In reality, we

might train a thousand different types of LSTM models,

a hundred different types of baselines, and multiple

versions of Prophet and other algorithms.) Once the

workflow manager understands that the models have

completed their training, it directs the tasks to validate

the models, then create an ensemble out of the

models by looking at their errors and how well they did

on the validation step and deciding how to combine

them. The results of all these processes get stored in

the data store.

Figure 4. The training module of the system.

Data
formatter

Ensemble
Learning

Deep Learning (LSTM)
Tensorflow

Anodot baselines
Anodot SDK

Prophet
Python

Hybrid Deep-Learning
Algorithm
PyTorch

Task Manager
Train/Validate
Apache Airflow

Preprocessing
Anodot Anomalies
Anodot correlations

TRAINING MODULE

https://www.anodot.com/

8  The Essential Guide to Time Series Forecasting — Part III

The task manager directs the orchestration engine

Kubernetes to handle the physical aspect of spinning

up and down the necessary servers to perform the

various tasks. It could be one server or it could be a

hundred, depending on the amount of activity for the

tasks at hand. It’s actually quite a lot of activity to have

to orchestrate. Apache Airflow doesn’t come “out of

the box” knowing how to manage all this. This is where

Anodot developers have to think about all these steps

and code it into the task manager.

There are different technologies associated with

different algorithms. For example, we use a version of

LSTM that is implemented in an open source package

called TensorFlow. Prophet is in Python, another

algorithm is in PyTorch, and Anodot wrote many of our

own linear algorithms. It means we have to combine

a lot of different technologies coming from different

sources, automate the process of spinning them up,

running them, taking their output, storing it, then

grouping it together with a consistent view. There’s a lot

of engineering work involved in getting this to work in

the click of a button.

The way that data science teams usually work today, if

they are given a forecasting task, they write something

that’s not at the click of a button. It’s going to go one

time and isn’t permanent. Developing a system that

preserves the data, the models, and so on for reuse

again and again is not trivial at all.

https://www.anodot.com/

9  The Essential Guide to Time Series Forecasting — Part III

THE FORECASTING MODULE
The forecasting module of the system is shown

in Figure 5.

The forecasting module is somewhat simpler than the

training module. Suppose a customer says, “I want

to forecast my revenue, 30 days in advance, for all my

countries.” That’s their definition, out of which comes a

lot of extra data – basically the results of what was done

on the training data during the training tasks – such

as what pre-processing was done, which things we

found correlated in the training phase, what anomalies

we are taking out, and which things around the data

preparation were necessary to run these models. All this

gets stored with that forecast task.

Now when we need to forecast, we want to get a new

data point for that revenue, tomorrow’s data point.

This forecasting module has to first figure out the

forecasting task related to the data here. We need to

load all these models that were chosen in the training

phase into memory. If it’s an LSTM model and one of

the baselines or maybe Prophet or some combination

of them, we have to bring up the servers and load

it into the appropriate technology that can put this

in memory. We do any pre-processing that would

pre-define on that data the correlated metrics, the

correlated events, and we find the anomalies in this

new data. Then we push the new data into all these

models and let them forecast. Once the forecast is done,

we store the forecast back into the time series database,

compute the error that we had from the last time

we had data, and store that error into the forecasting

persistency. And that’s it.

Figure 5. The forecasting module of the system.

FORECASTING MODULE

Data
formatter

Ensemble
Based
Forecast

Deep Learning (LSTM)
Tensorflow

Anodot baselines
Anodot SDK

Prophet
Python

Hybrid Deep-Learning
Algorithm
PyTorch

Task Manager
Predict
Apache Airflow

Preprocessing
Anodot Anomalies
Anodot correlations

Validator Module
Retraining/Notification
Anodot Anomaly/Static
Alerting

https://www.anodot.com/

10  The Essential Guide to Time Series Forecasting — Part III

Once those tasks are finished, we need to tear down

all the servers we used for this process if we don’t want

to keep them running. If the forecast is done daily,

we don’t need to let these servers run, but If we do

the forecasting every minute, then maybe we keep

them alive. Tearing down the servers takes much

less time than bringing up the relevant servers. For

example, it takes a few minutes to bring up a server

with TensorFlow that can run an LSTM model, but that

server can be killed in seconds. The complexity of these

activities is about the same, however.

As the task manager, Apache Airflow is the component

that issues the commands to “do step A, then step B,

etc.” However, we have to write code to do all the steps

that are necessary to train a forecast task and to model

the steps necessary to actually perform the forecast.

And Kubernetes is the piece that actually controls

what is needed with the servers. Apache Airflow sends

commands to Kubernetes to say, “You know we need

a TensorFlow server. Bring me a TensorFlow server.”

And once Kubernetes does that, then Airflow says,

“Okay, install this software on it.” And now once that’s

installed, then Airflow sends the command to that

server and says, “Okay, here’s the data, send the data to

this server, train the model.” And once that’s done and

the process ends, Airflow will say, “Okay, this process

ends, run the next process.” That’s the nature of how

this is. The coding part of this effort, by the way, is not

easy. It requires data science skills, DevOps skills and

generic skills.

https://www.anodot.com/

11  The Essential Guide to Time Series Forecasting — Part III

WHAT IT TAKES
TO BUILD THIS
SYSTEM:
IN CONSIDERATION
OF BUILD VS. BUY
As with any type of software application, there are

some enterprise organizations that ask, “Could we build

our own automated forecasting system? Is it better to

build or buy this type of solution?” It’s a fair question

and we want to help companies that are considering

the “build” option by sharing our experience of what it

takes to build a fully automated forecasting system. Of

course, this is Anodot’s experience for the approach we

have taken, and other companies’ experiences might

be different.

It takes a multi-disciplinary team of experts to design

and build this type of system. The team needs data

scientists – in our experience, at least three people –

that understand series analysis and forecasting. Even

though the forecasting algorithms are generally well

known, getting them to work correctly with time series

data is not trivial. Such algorithms don’t work “straight

out of the box” and they require some finessing to suit

the purpose.

Using linear models takes another set of skills. All the

baselines that we’ve built take a different type of skill

than what’s needed for working with LSTMs. Prophet

is an open source product from Facebook and some

people consider it to be easier to use. Nevertheless,

building a system such as this takes a data science team

that deeply understands time series analysis and that

has a working knowledge about all the different types

of models that are out there. It takes time to bring up

such a team—and it’s usually not one person because

it’s hard to find this level of knowledge and expertise all

in one person.

https://www.anodot.com/

12  The Essential Guide to Time Series Forecasting — Part III

Logo Mark

Word Mark

Word Mark (without Tagline)

A more likely scenario is that an enterprise wouldn’t

build an entire forecasting system such as that

described in this series of white papers; instead a

company might have a data scientist or maybe a team

of them on staff to do one-time forecasts using open

source algorithms. We discussed the drawbacks of this

approach in Part I: the forecast is generally high level,

covering a single metric, not as accurate as it could be,

and it is a one-time forecast that is updated infrequently.

On the other hand, buying a solution – or in this

case, using Software as a Service – means that the

organization can begin forecasting today and not

wait months to a year to get a forecast. Moreover, the

forecast will be extremely accurate (see all the built-

in design considerations outlined in Part II of this

white paper series) and the forecast can be generated

repeatedly on demand or continuously for better

operational control. No data science team is required to

use this solution.

The multi-disciplinary team also includes a software

engineering team that helps set up the automation of all

these processes, a user interface (UI) team, and a DevOps

team that helps automate the coding part of it and the

deployment of all these components. The team needs

people who can work with the databases, the back-end

systems, orchestration, and all the automation aspects.

Anodot takes on the complexity of working with the

algorithms and models so that customers – end users

– don’t have to. The point of our product is to hide all

the complexity from users so that no data science skills

are needed on their end. Anodot has developed a SaaS

product such that all a customer has to do is submit

the data and define the task. However, a company

developing a forecasting system for internal use may

not need to be so fastidious about simplifying the

solution such that a data scientist isn’t needed to use

the product. It’s all a matter of preferences for how to

use the solution once it’s developed.

As for the time to develop this type of system, it’s

probably a year or more, plus additional time for

research preceding the development effort. Also, keep

in mind that Anodot had already developed the solution

for anomaly detection that is a critical piece of the data

pre-processing in the forecasting system. An enterprise

building its own forecasting system will need a method

for detecting anomalies in the data. (For information

on what it takes to develop an anomaly detection

system, please see our three-part white paper series

on The Ultimate Guide to Building a Machine Learning

Anomaly Detection System.)

https://www.anodot.com/
https://www.anodot.com/request-demo/?utm_source=white_paper&utm_campaign=outlier&utm_medium=pdf
https://www.anodot.com/resources/
https://www.anodot.com/resources/

Logo Mark

Word Mark

Word Mark (without Tagline)

For more information,
please contact Anodot:

North America
669-600-3120
info.us@anodot.com

International
+972-9-7718707
info@anodot.com

Anodot is a turnkey AI analytics platform whose
anomaly detection and forecasting is helping
market leaders such as Waze, Microsoft and Wix to
seize opportunities and avoid revenue loss.

Anodot Autonomous Detection drives scalable,
adaptive business and operational monitoring.
Patented machine learning algorithms weed out
superficial outliers and alert storms to reveal critical
anomalies and correlate them to similar anomalies
and events. Leading fintech, eCommerce, telco,
gaming, adtech and digital businesses are using
Anodot to cut remediation time by 50-80 percent.

Anodot Autonomous Forecast continuously
forecasts growth and demand – no data science
experience needed. Algorithms are independently
selected, trained and tuned to produce highly
accurate forecasts. By identifying your data
trends in real time, Anodot enables companies to
quickly anticipate changing conditions and avoid
unnecessary costs.

Learn more at www.anodot.com

© Copyright 2019, Anodot. All trademarks, service marks
and trade names referenced in this material are the
property of their respective owners.

SUMMARY
The process of building an autonomous forecasting

system is complex and extensive. Anodot’s approach

splits the system architecture into three components:

the data store, the training module and the forecasting

module. There probably are other ways to design such a

system, but we chose this approach because we believe

it’s the best way to deliver highly accurate forecasts

without requiring the end user company to have a data

scientist at the ready.

A skilled multi-disciplinary team is needed to handle

different aspects of the solution: data scientists to

select and work with the training algorithms, DevOps

professionals to design and orchestrate the automated

tasks, software engineers to code the complex tasks,

and so on. Though companies could build their own

forecasting system, it’s much more practical to use what

has already been built by the expert team at Anodot.

Let Anodot show you how you can
achieve highly accurate forecasts for

better business decisions.

GET A DEMO

https://www.anodot.com/
https://www.anodot.com/request-demo/?utm_source=white_paper&utm_campaign=outlier&utm_medium=pdf
mailto:info.us%40anodot.com?subject=
mailto:info.us%40anodot.com?subject=
http://www.anodot.com/
https://www.anodot.com/request-demo/
https://www.anodot.com/

